skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vignali, C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Context.Large-scale environment is one of the main physical drivers of galaxy evolution. The densest regions at high redshifts (i.e.z > 2 protoclusters) are gas-rich regions characterised by high star formation activity. The same physical properties that enhance star formation in protoclusters are also thought to boost the growth of supermassive black holes (SMBHs), most likely in heavily obscured conditions. Aims.We aim to test this scenario by probing the active galactic nucleus (AGN) content of SPT2349–56: a massive, gas-rich, and highly star-forming protocluster core atz = 4.3 discovered as an overdensity of dusty star-forming galaxies (DSFGs). We compare our results with data on the field environment and other protoclusters. Methods.We observed SPT2349–56 withChandra(200 ks) and searched for X-ray emission from the known galaxy members. We also performed a spectral energy distribution fitting procedure to derive the physical properties of the discovered AGNs. Results.In the X-ray band, we detected two protocluster members: C1 and C6, corresponding to an AGN fraction among DSFGs in the structure of ≈10%. This value is consistent with other protoclusters atz  =  2 − 4, but higher than the AGN incidence among DSFGs in the field environment. Both AGNs are heavily obscured sources, hosted in star-forming galaxies with ≈3 × 1010 Mstellar masses. We estimate that the intergalactic medium in the host galaxies contributes to a significant fraction (or even entirely) to the nuclear obscuration. In particular, C1 is a highly luminous (LX = 2 × 1045 erg s−1) and Compton-thick (NH = 2 × 1024 cm−2) AGN, likely powered by aMBH > 6 × 108 MSMBH, assuming Eddington-limited accretion. Its high accretion rate suggests that it is in the phase of efficient growth that is generally required to explain the presence of extremely massive SMBHs in the centres of local galaxy clusters. Considering SPT2349–56 and DRC, a similar protocuster atz = 4, and under different assumptions on their volumes, we find that gas-rich protocluster cores atz ≈ 4 enhance the triggering of luminous (logLX/erg s−1 = 45 − 46) AGNs by three to five orders of magnitude with respect to the predictions from the AGN X-ray luminosity function at a similar redshift in the field environment. We note that this result is not solely driven by the overdensity of the galaxy population in the structures. Conclusions.Our results indicate that gas-rich protoclusters at high redshift boost the growth of SMBHs, which will likely impact the subsequent evolution of the structures. Therefore, they stand as key science targets to obtain a complete understanding of the relation between the environment and galaxy evolution. Dedicated investigations of similar protoclusters are required to definitively confirm this conclusion with a higher statistical significance. 
    more » « less
  2. Abstract We present the first deep X-ray observations of luminous fast blue optical transient (LFBOT) AT 2018cow at ∼3.7 yr since discovery, together with the reanalysis of the observation atδt∼ 220 days. X-ray emission is significantly detected at a location consistent with AT 2018cow. The very soft X-ray spectrum and sustained luminosity are distinct from the spectral and temporal behavior of the LFBOT in the first ∼100 days and would possibly signal the emergence of a new emission component, although a robust association with AT 2018cow can only be claimed atδt∼ 220 days, while atδt∼ 1350 days contamination of the host galaxy cannot be excluded. We interpret these findings in the context of the late-time panchromatic emission from AT 2018cow, which includes the detection of persistent, slowly fading UV emission withνLν≈ 1039erg s−1. Similar to previous works (and in analogy with arguments for ultraluminous X-ray sources), these late-time observations are consistent with thin disks around intermediate-mass black holes (withM≈ 103–104M) accreting at sub-Eddington rates. However, differently from previous studies, we find that smaller-mass black holes withM≈ 10–100Maccreting at ≳the Eddington rate cannot be ruled out and provide a natural explanation for the inferred compact size (Rout≈ 40R) of the accretion disk years after the optical flare. Most importantly, irrespective of the accretor mass, our study lends support to the hypothesis that LFBOTs are accretion-powered phenomena and that, specifically, LFBOTs constitute electromagnetic manifestations of super-Eddington accreting systems that evolve to ≲Eddington over a ≈100-day timescale. 
    more » « less
  3. Context.Accretion disk winds launched close to supermassive black holes (SMBHs) are a viable mechanism providing feedback between the SMBH and the host galaxy. Aims.We aim to characterize the X-ray properties of the inner accretion disk wind of the nearby active galactic nucleus PG 1126-041 and to study its connection with the UV-absorbing wind. Methods.We performed a spectroscopic analysis of eightXMM-Newtonobservations of PG 1126-041 taken between 2004 and 2015, using both phenomenological models and the most advanced accretion disk wind models available. For half of the data set, we were able to compare the X-ray analysis results with the results of quasi-simultaneous, high-resolution, spectroscopic UV observations taken with the Cosmic Origins Spectrograph on board theHubbleSpace Telescope. Results.The X-ray spectra of PG 1126-041 are complex and absorbed by ionized material, which is highly variable on multiple timescales, sometimes as short as 11 days. Accretion disk wind models can account for most of the X-ray spectral complexity of PG 1126-041, with the addition of massive clumps, represented by a partially covering absorber. Variations in column density (NH ∼ 5 − 20 × 1022cm−2) of the partially covering absorber drive the observed X-ray spectral variability of PG 1126-041. The absorption from the X-ray partially covering gas and from the blueshifted C IVtroughs appear to vary in a coordinated way. Conclusions.The line of sight toward PG 1126-041 offers a privileged view through a highly dynamic nuclear wind originating on inner accretion disk scales, making the source a very promising candidate for future detailed studies of the physics of accretion disk winds around SMBHs. 
    more » « less